



# Prediction of core temperature during prolonged cold water immersion in thermally protected men and women

Courtney E. Wheelock, Nathan E. Bartman, Riana R Pryor, J Luke Pryor, David Hostler Center for Research and Education in Special Environments University at Buffalo, Buffalo, NY, 14226





## Background

- Thermoregulation during cold water immersion has strong associations with:
  - Water temperature
  - Exposure duration
  - Metabolic heat production
  - Insulative and/or thermal protection
- Predictive modeling of core temperature and shivering responses in cold conditions appropriately forecast hypothermia and prevent unfavorable outcomes
- Planned dive operations would benefit from the inclusion of thermal protection garments to accurately plan exposure limits and increase mission efficiency





### Methods

#### <u>Aim:</u>

Provide a preliminary model to predict core temperature response during cold water immersion while wearing a 7mm neoprene wetsuit

- Secondary analysis of pooled data from 5 completed studies
  - Cold water immersion from 1-4 hours
  - 7mm wetsuit, boots, gloves, and hood
  - Subject morphometrics
    - age, sex, height, mass, body mass index, body surface area, body fat percent



.....



| Study<br>No. | Participants<br>[Female] | Age (y) | Weight<br>(kg) | Height<br>(cm) | BMI (kg∙m⁻²) | Body Fat<br>(%) | BSA (m²)   |
|--------------|--------------------------|---------|----------------|----------------|--------------|-----------------|------------|
| 1            | 12 [6]                   | 23 (2)  | 70.4 (12.4)    | 171 (10)       | 23.9 (2.5)   | 16.1 (6.4)      | 1.82 (0.2) |
| 2            | 14 [0]                   | 27 (4)  | 78.9 (8.1)     | 175 (6)        | 25.7 (1.9)   | n/a             | 1.94 (0.1) |
| 3            | 9 [0]                    | 23 (1)  | 83.7 (7.0)     | 178 (8)        | 26.5 (2.0)   | 17.4 (5.0)      | 2.02 (0.1) |
| 4            | 9 [4]                    | 25 (2)  | 68.7 (13.3)    | 169 (9)        | 24.0 (2.5)   | 19.3 (5.1)      | 1.78 (0.2) |
| 5            | 7 [0]                    | 23 (2)  | 79.6 (10.4)    | 176 (8)        | 25.8 (2.4)   | 11.3 (3.6)      | 1.96 (0.2) |
| AVG          | 51 [10]                  | 24 (2)  | 76.3 (6.4)     | 174 (4)        | 25.2 (1.2)   | 16.0 (3.4)      | 1.9 (0.1)  |





| Study | Total      | Immersion Conditions              |          |         |                                                                                                       |
|-------|------------|-----------------------------------|----------|---------|-------------------------------------------------------------------------------------------------------|
| No.   | Immersions | Water Duration<br>Temp (°C) (min) |          | Depth   | Immersion Position and Study Protocol                                                                 |
| 1     | 24         | 25<br>10                          | 60       | 1.0 ATA | Seated rest -<br>Dexterity testing at 15 and 45 min of immersion                                      |
| 2     | 28         | 25                                | 201 (11) |         | Seated rest –                                                                                         |
|       |            | 15                                | 204 (12) | 1.6 AIA | Carotid body chemosensitivity testing during immersion                                                |
| 3     | 18         | 10                                | 240      | 1.0 ATA | Seated rest –<br>Fully submersed in salt water (salinity: 23.1 g/L)<br>breathing surface supplied air |
| 4     | 18         | 20                                | 240      | 1.0 ATA | Seated Rest –<br>Breathing surface supplied air<br>OR<br>Breathing 100% O2                            |
| 5     | 21         | 18                                | 240      | 1.0 ATA | Seated Rest                                                                                           |
| AVG   | 109        | 17.6 (5.4)                        | 190 (72) | -       | -                                                                                                     |





## Model Development

• Core temperature change ( $\Delta Tc$ ) = Final – Baseline (min 0) core temperature

- A mixed-effects model was fitted with a linear step wise regression analysis using clustering effect (random intercept) for subjects that repeated multiple conditions
  - Variables of interest (i.e. subject morphometrics, water temperature, immersion time) were reduced to significance (p<0.15)</li>
  - Potential predictors included body mass index (BMI) OR body surface area (BSA)





#### Results

 Best fit model (p<0.001) included the predictors of BMI, immersion time (I<sub>t</sub>), water temperature (T<sub>w</sub>), body fat percent (BF%), and I<sub>t</sub>xT<sub>W</sub> interaction (all p<0.05)</li>

 $\Delta Tc (^{\circ}C) = -2.694 + 0.0427(BMI) + 0.0037(I_{t}) + 0.0337(T_{W}) + 0.0302(BF\%) - 0.0002(I_{t}xT_{W})$ 

#### Application:

- Predicted  $\Delta T_{c}$  for an average male during a 3 h submersion in 15°C  $T_{w}$  is -0.55°C
- True average  $\Delta T_{c}$  was -0.52 ± 0.36°C

#### School of Public Health and Health Professions







#### Considerations

- The best fit model to predict core temperature change included water temperature, exposure duration, BMI, and body fat percent
- Thermal protection safeguards core temperature and extends exposure time, and should be considered when planning dive operations
- This preliminary analysis provides two models to predict ∆T<sub>C</sub> while wearing a 7mm wetsuit in cold water for up to four hours of resting conditions, and its application may extend to light exercise, but further research is needed
- Future work to expand this model should include additional wetsuit thickness, varying depths, and increased metabolic heat production



## QUESTIONS

Courtney Wheelock cwheeloc@buffalo.edu

